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The Need for a Coupled Human  
and Natural Systems Understanding 
of Agricultural Nitrogen Loss
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Reactive nitrogen loss from agricultural fertilizer use remains a crucial environmental problem in the United States, contributing to ecosystem 
degradation and global climate change. This intractable problem requires a coupled human and natural systems approach that combines 
biophysical, sociological, and economic knowledge into an integrative analysis. Much is known about the biogeochemistry of nitrogen and 
agricultural nitrogen loss; however, much is not known about how soil variability and climate change will affect farmer decisionmaking. 
Although it is widely understood that personal values and beliefs, social norms, economics, and policies influence farmer decisionmaking, 
very little is known about decisionmaking specific to fertilizer management. In addition, little is known about the socioeconomic influences 
on decisionmaking across scales and how ecological change is perceived and responded to. Combining sociological, economic, and biophysical 
knowledge can provide key insights regarding how these factors interact and can support more effective strategies to address this persistent 
problem.
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Largely because of its extensive use in agriculture,   
 excess reactive nitrogen (N) remains one of the most 

significant environmental problems today. N is an essential 
constituent of amino acids, required for the assembly of 
proteins and for the nucleotides that store and process all 
genetic information. Humans depend on agricultural sys-
tems to provide most of their daily protein needs, prompting 
Liebig (1840) to quip that agriculture’s principal objective is 
the production of digestible N. Today’s intensive agriculture 
is built on a foundation of N augmentation via the use of 
synthetic fertilizers and the cultivation of nitrogen-fixing 
crops on a massive scale. The global anthropogenic inputs 
of N, 195 teragrams per year, now exceed background, pre-
industrial inputs from terrestrial biological N fixation by a 
factor of three (Vitousek et al. 2013). Most of this N is for 
agricultural purposes. Excess N in the environment con-
tributes to aquatic and marine eutrophication and hypoxia, 
atmospheric smog, and radiative forcing in the atmosphere. 
The US Environmental Protection Agency has cited nitrate 
leaching from agriculture as one of the nation’s most sig-
nificant water pollution problems. Agriculture also releases 
approximately 70% (USEPA 2009) of US emissions of 
nitrous oxide (N2O), an important greenhouse gas that also 
contributes to stratospheric ozone depletion.

Excess N in the environment is a result of a complex set 
of human behaviors interacting with natural processes and 
therefore represents a compelling example of a coupled 
human and natural systems (CHANS) problem. Attention 
to CHANS research has increased in recent years as sci-
entists increasingly recognize the interconnectedness and 
interdependence of social and ecological systems (Liu et al. 
2007, Collins et al. 2011). CHANS are complex and adap-
tive and require interdisciplinary perspectives and research 
approaches (Roy et al. 2013). Recent examples include work 
on ecosystem services (Liu et al. 2007, Alberti et al. 2011), 
land use and land-cover change (Brown et al. 2008, Turner 
et al. 2007), and cities (Ruddell et al. 2010, Grimm et al. 
2013). Taken together, these examples demonstrate that 
the complexity of the issues investigated—from problem 
conceptualization to data integration and  analysis—cannot 
be understood without linking human and natural systems 
(Liu et al. 2007). CHANS and other forms of interdisciplin-
ary research also face challenges, including institutional 
barriers to cross-disciplinary research (such as lack of 
incentives in tenure and promotion and narrowly-defined 
research funding opportunities), differences in  terminology 
(Roy et al. 2013), and epistemological differences among 
disciplines (Miller et al. 2008).
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Here, we explore excess N in the environment using a 
CHANS approach. Understanding the excess reactive N 
problem requires knowledge about the biophysical mecha-
nisms by which N flows through the environment as well as 
the socioeconomic factors that shape farmer decisionmaking 
regarding N management. Biophysical scientists have inves-
tigated N in the environment for more than a century, and 
although there are still uncertainties, the basic biophysical 
factors that affect N pools and flows are mostly well under-
stood. More questions remain regarding the human dimen-
sions of excess N. As N use in global agriculture continues 
to increase, we believe it useful—and, indeed, necessary—to 
gain a systems-based understanding of the social, economic, 
and biophysical factors that contribute to this persistent and 
pernicious environmental problem. Here, we examine what 
is known about this system from a CHANS perspective and 
highlight areas for future study.

Fertilizer use and excess reactive nitrogen
Global N fertilizer use has increased approximately ten-
fold between 1950 and 2008 as N fertilizers have become a 
pervasive feature of modern crop management (Robertson 
and Vitousek 2009). The net benefit to humans of this 
additional N is immense: It has enabled substantially more 
food to be grown on a given area of land, thereby increasing 
human carrying capacity, enabling unprecedented increases 
in human population and welfare, and sparing lands that 
would otherwise have been cleared for cultivation–contrib-
uting indirectly to biodiversity conservation and climate 
mitigation (Burney et al. 2010). However, the environmen-
tal consequences of this additional N are also substantial. 
Increased application and persistent inefficiencies in N 
use have resulted in significant environmental and social 
impacts (Mosier et al. 2001).

While reactive N losses from cropping systems is one of 
the most widely recognized environmental problems today 
(Davidson et al. 2012), it is also one of the most difficult to 
abate. Less than 40% of the N fertilizer added to most annual 
grain crops is taken up by the crop (Cassman et al. 2002). 
The remainder is available for loss through air, surface water, 
or groundwater pathways (Follett and Delgado 2002). Only 
where soil organic matter is accumulating, such as in perma-
nent no-till or cover-cropped systems (e.g., Syswerda et al. 
2011), is a small portion retained organically bound.

N lost as nitrate pollutes groundwater and surface waters, 
contributing to human health risks (Peel et al. 2013) and 
freshwater eutrophication (Conley et al. 2009). Largely 
because of fertilizer use, approximately 60% of coastal riv-
ers and bays in the United States have been degraded by 
nutrient pollution (Howarth et al. 2002). Eventually, much 
of the agricultural nitrate reaches the coastal ocean, where 
it can cause hypoxic or dead zones that harm coastal fisher-
ies (Goolsby et al. 1999). Nitrogen lost as ammonia enters 
the atmosphere to be deposited downwind as unwanted wet 
or dry deposition (Simpson et al. 2011). Nitrogen lost as N 
oxides to the atmosphere contributes to smog formation 

and becomes acid rain (Jaeglé et al. 2005). Finally, N lost 
as the greenhouse gas (GHG) nitrous oxide (N2O) contrib-
utes to climate change (Pachauri and Resinger 2007). N2O 
is a powerful warming agent: Over a 100-year period, a 
 kilogram (kg) of N2O is approximately 300 times more effec-
tive at heating the atmosphere than a kg of carbon dioxide.

Why is so much N lost? The primary reason is low N-use 
efficiency (NUE) at both the plant and cropping system scales. 
At the plant scale, NUE refers to the amount of N used by a 
plant to accumulate biomass, often measured as the carbon 
to N ratio of plant tissue. At the field scale, when soil organic 
and inorganic N pools are in steady state, NUE refers to the 
amount of yield per unit of added N, or the proportion of 
applied N that is removed in harvested biomass (Robertson 
and Vitousek 2009). In other words, more N-efficient crop-
ping systems produce more biomass with less fertilizer N.

In the United States, about 50% of fertilizer N is applied 
to corn, 11% to wheat, 10% to turf, and 3% to cotton, with 
the remainder shared by a number of small grain and 
horticultural crops (ERS 2012). Corn illustrates the NUE 
conundrum. Corn puts on most of its biomass during a 
6-week period of exponential growth, during which N uptake 
demands can reach an astonishing 4 kg N per hectare (ha) 
per day (Robertson 1997). This rate is sustained for 3–4 
weeks, after which N uptake falls to nil over the following 
2–3 weeks as N in vegetated tissues is remobilized to grain. 
This demand, though of a relatively short duration, cannot 
be met solely by the microbial mineralization of soil organic 
matter, which might provide about 1 kg N per ha per day 
under favorable conditions. Moreover, because at the plant 
scale, corn has an intrinsically low NUE (Below et al. 2007), 
about twice as much N must be available in the soil solution 
as the plant is capable of extracting. Consequently, sufficient 
N must be applied to soil before the period of high growth 
to ensure that enough is available when the corn needs it. 
Therefore, the soil solution is usually awash in N from the 
point when the fertilizer is applied until it is taken up by the 
crop or lost to various environmental fates.

Strategies are available to minimize N loss from cropped 
fields. Agronomists promote a 4R strategy for managing N 
(IFA 2009): applying N at the right rate, at the right time, in 
the right place, and in the right formulation. Applying no 
more N than the crop needs (right rate) is the most obvious 
strategy for conserving N. Applying it closer to when the 
crop needs it (right time) is another, as is applying it close 
to growing plants (e.g., by banding fertilizer within the row 
close to roots) and on the basis of soil fertility differences 
(e.g., by applying N at variable rates across individual fields; 
right place). Likewise, applying N in a chemical form that is 
not easily lost conserves more for plant use (right formula-
tion). A variety of technologies exist for conserving fertilizer 
N (Robertson and Vitousek 2009), including N-rate calcu-
lators, variable-rate applicators that apply N differentially 
across a field on the basis of past yield patterns or on-the-
go leaf spectroscopy, and polymer coatings that dissolve 
to release N to the soil solution as soil conditions become 
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favorable for plant growth. However, the adoption rate for 
these technologies is uniformly low. Most US farmers are not 
applying these strategies, and crops continue to be fertilized 
in excess (Ribaudo et al. 2011). For example, few farmers 
use soil tests prior to fertilizer application and approximately 
1/3  of Midwest farmers still apply N fertilizer to corn the 
prior fall, 6–7 months before the crop needs it (Ribaudo et al. 
2011). Although considerable effort continues to be invested 
in developing strategies to apply N fertilizer more precisely, 
relatively little is known about how farmers make decisions 
about N fertilizer application.

Understanding the use and misuse of N fertilizer and its 
ecological consequences presents a classic CHANS prob-
lem (figure 1). Water pollution and GHG emissions are 
linked to individual human decisions, and these decisions 
are likely increasingly affected by the associated ecological 
changes. Because this system has serious ecological and 
social impacts, it is crucial to explore the human–environ-
ment interactions that prevent a tighter coupling of the 
biogeochemical N cycle. Certainly, it is not a biogeochemi-
cal issue alone: We know the major pathways of N gain and 
loss from cropping systems as well as the biogeochemical 
controls on most internal transformations. Nor is it strictly 
a social issue: We know that farmers make decisions that 
balance competing needs for income, social acceptance, 
and environmental stewardship. We also know that farmer 
decisions regarding fertilizer are embedded within a larger 
context and are not only tied to farm-level factors but are 
also affected by regional, national, and international market 
conditions and agricultural policies.

At its core, then, excess N is an interface issue: 
Understanding the human–natural system interface is 
 crucial to identifying workable solutions to the reactive 

N  problem. This approach requires 
assessing what we know about the 
 biophysical and socioeconomic  factors 
in this system and then integrat-
ing these pieces into a comprehensive 
understanding of their links. Below, we 
 discuss the current state of understand-
ing regarding the natural and social 
aspects of this CHANS application and 
conclude by highlighting areas for future 
research and the integration of biophysi-
cal and socioeconomic findings. Only by 
combining biogeochemical, economic, 
and social factors will we sufficiently 
understand how changes in the future 
might reshape relationships within this 
 coupled system in new ways.

The biogeochemical challenge
Arguably, enough is known about the 
biophysical basis of N loss from field crop 
systems that the only real impediment to 
enacting solutions is overcoming deploy-

ment  barriers that are largely economic and social (Robertson 
and Vitousek 2009). This is true, however, only up to a 
point: Although we understand much about fundamental 
N-cycle processes and how they interact with other parts 
of the biophysical environment, including soil, plant, and 
climate variables, we nevertheless do not fully understand 
how key portions will respond to climate change (Robertson 
et al. 2012) nor how field-scale spatial and temporal vari-
ability will affect this response. Uncertainty associated with 
these responses makes formulating an integrated biophysical, 
social, and economic understanding substantially difficult.

Of particular import is the uncertainty associated with the 
temporal and spatial variability of N-cycle responses and, 
in particular, those responses that interact to affect field-
scale NUE (e.g., Basso et al. 2013). This is evident in the 
response of crop yield to fertilizer-N additions across fields 
and years. Hundreds of N-response experiments across the 
upper Midwest over the past few decades have established 
agronomically optimum N needs for corn across represen-
tative soil types and climate years. Results now inform the 
basis for Maximum Return to Nitrogen (MRTN; Sawyer et 
al. 2006) university fertilizer recommendations across seven 
states (Iowa, Illinois, Indiana, Michigan, Minnesota, Ohio, 
Wisconsin). The MRTN approach to N fertilizer recommen-
dations uses asymptotic yield curves together with fertilizer 
and expected grain prices to define economically optimum 
N rates for a particular geographic area.

MRTN recommendations average a substantial amount 
of annual variability into a single location-specific recom-
mendation. Although in many sites, the response is relatively 
stable from year to year (annual precipitation differences do 
not much affect optimum N rates; e.g., Dharmakeerthi et al. 
2006), in other sites, year-to-year variability is significant 
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Figure 1. The coupled natural and human nitrogen cycle in agriculture. 
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and sometimes substantial (e.g., Bundy et al. 2011, Basso 
et al. 2012). It may be that part of this stability is soil related: 
Different soils have the capacity to differentially buffer 
precipitation variability on crop growth and N supply. For 
example, a soil profile that enters the growing season fully 
charged with overwinter water will hold a different amount 
of water depending on soil structure and soil organic mat-
ter (SOM) at different profile depths. Whereas a southwest 
Michigan Alfisol will typically hold 130 millimeters (mm) 
of water in the rooting zone, an Iowa Mollisol will hold 
250  mm, and more stored water at the start of the grow-
ing season provides resilience against drought, lessening its 
effects on final yields. At the same time, soil water interacts 
with SOM to buffer crop N needs: In years with growing sea-
son rainfall that fully meets crop water needs, the additional 
rainfall will also stimulate microbes to mineralize more N 
from SOM, making up what might otherwise be a fertilizer-
N deficit—so long as sufficient SOM is available. There has 
so far been little effort to parse the effects of a soil structure × 
SOM interaction on N-response stability. Broadly speaking, 
geomorphologic (but not SOM) differences are embedded 
in the different MRTN recommendations for different states 
and regions. However, theory suggests that the interaction of 
soil structure and SOM could be more important than either 
factor alone, and knowledge of this relationship could sig-
nificantly reduce the temporal uncertainty associated with 
N response rates and regional recommendations for farmers.

An additional overarching source of future uncertainty 
relates to climate change. Midwest climates are changing: 
Annual temperatures have increased 0.6 degrees Celsius 
on average over the past century and at a faster rate in 
recent decades, mostly as elevated wintertime and nighttime 
temperatures (Pryor and Barthelmie 2012). The frost-free 
growing season has so far lengthened by two weeks with 
earlier springs and later first frosts (Schoof 2009), and plant-
hardiness zones have shifted northward (USDA 2012). In 
addition—and perhaps more importantly for agricultural 
N loss (Robertson et al. 2012)—climate variability has also 
increased, expressed as more frequent winter thaws and sum-
mer heat waves and more variable precipitation (Villarini et 
al. 2011), with spring rainfall more frequent and growing 
season rainfall occurring in larger, more separated events.

A particular vector both affected by and affecting climate 
is N2O loss. Agricultural soils are responsible for about 60% 
of global anthropogenic N2O production (Pachauri and 
Resinger 2007), and changing temperatures and precipita-
tion patterns may have particularly important impacts on 
N2O fluxes. More wintertime thaws with less snow cover can 
substantially increase wintertime emissions (figure 2), and a 
greater frequency of dry soils preceding growing season rain 
events can significantly increase the mole ratio of N2O to N2 
(Bergsma et al. 2002), potentially leading to greater growing-
season N2O emissions. Especially in light of new carbon 
market protocols that reward farmers for lowering their N2O 
emissions (Millar et al. 2010), understanding these future 
impacts will be important for farmer decisionmaking.

The socioeconomic challenge
Farmer fertilizer decisions are embedded within a complex 
social and economic system that influences not only fertil-
izer use but also related behaviors, such as technology adop-
tion, crop choices, production decisions, and the use of best 
management practices. These field- and farm-level decisions 
are influenced by state and federal farm policies, as well as 
by global market forces. As with biophysical systems, social 
and economic systems are subject to feedback. Particularly 
important in the context of excess N is the feedback between 
ecological change (e.g., nitrogen leaching and eutrophica-
tion) and federal policies. 

The problems associated with excess N are well known 
and have resulted in policy changes. For example, in recent 
decades, the federal government has significantly increased 
investment in working-lands conservation programs that 
address ongoing environmental problems stemming from 
agriculture, including N leaching (Reimer and Prokopy 2014). 
The federal government has attempted to address hypoxia in 
the Gulf of Mexico directly through policies and programs 
aimed at reducing fertilizer application and altering land use 
(Mississippi River/Gulf of Mexico Watershed Nutrient Task 
Force 2008). Other indirect feedback exists as well, including 
federal policies that affect crop choices (e.g., direct payments) 
and production decisions (e.g., bioenergy policy).

Because the environmental impacts of agriculture emerge 
from the cumulative actions of individual farmers, social 
scientists—including sociologists and economists—have 
explored factors influencing the adoption of environmentally 
friendly farming practices in the United States. Although 
some of this literature has focused on aspects related to 
farm N management, there is still uncertainty surrounding 
how farmers make fertilizer decisions, including applica-
tion methods and rates. Much of the social and behavioral 
research regarding farmer decisionmaking has been framed 
around the adoption of conservation practices. A number 
of studies have explored farmer adoption of comprehensive 
nutrient management plans, soil testing, or variable-rate fer-
tilizer application (Prokopy et al. 2008). Most have failed to 
explore N management in its entirety, and because farmers 
may not view application decisions specifically through an 
environmental lens, studies focusing primarily on the envi-
ronmental aspects of decisionmaking may miss important 
behavioral determinants.

The majority of the sociological adoption literature 
has focused on microscale (individual farmer or farm) or 
mesoscale (community level) factors. In this literature, 
which broadly explores adoption of conservation prac-
tices in general, the importance of demographic, farm 
structure, and socioeconomic variables, as well as the 
role of personal values and beliefs, access to information, 
risk perceptions, and other individual characteristics, 
has been exhaustively examined (e.g., Napier et al. 1986, 
Napier and Camboni 1988). Others have scaled their 
analyses beyond individual farmers to explore the spread 
of information and the importance of social networks and 
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social capital, including trust and reciprocity (Lubell and 
Fulton 2007).

Specific to N or nutrient management, social science 
studies have focused on the adoption of soil testing (Bosch 
et al. 1995, Khanna 2001), the incorporation of  variable-rate 
application or precision-agriculture techniques (Daberkow 
and McBride 2003), and the reduction of inputs (Lasley 
et al. 1990, McGuire et al. 2012). These studies have identi-
fied a number of important factors influencing individual 
behaviors, including technical capacity (Khanna 1999); 
land tenure (owning versus renting; Bosch et al. 1995); 
and attitudes toward technology, the environment, and 
personal safety (Lasley et al. 1990). Economics remains an 
important factor influencing application because N fertil-
izer represents a major cost (approximately 45%) of corn 
production. Nevertheless, relative to the price of corn, until 
very recently the cost has not much increased over the past 
20 years, even though in absolute terms, N fertilizer is two 
to three times more expensive than it was 15 years ago 
(Robertson and Vitousek 2009).

A preliminary study focusing on corn farmers in south-
west Michigan indicates that knowledge and sources of 

information may represent important 
factors influencing the application of N 
fertilizer (Stuart et al. 2012). Although 
this study included only four Michigan 
counties, the results highlight several 
important factors: For example, a mail 
survey indicated that most corn farmers 
(70%) in the region received the bulk 
of their information about N applica-
tion rates from fertilizer dealers and 
that a majority ranked fertilizer dealers 
(37%) and seed company agronomists 
(18%) together as their most important 
sources of information (figure 3). The 
mail survey also revealed that 77% of 
respondents never used university fer-
tilizer recommendations. Results from 
the survey, interviews, and focus groups 
indicate that very few farmers know that 
N fertilizer is linked to GHG emissions 
and that only 5–10% of survey respon-
dents had ever used tools such as soil 
tests and delayed-release products.

Stuart and colleagues (2012) also 
explored potential policy options aimed at 
reducing N inputs. Farmers were asked to 
indicate their interest in potential  offsets 
programs to pay farmers for reducing N 
application: Approximately 50% of farm-
ers surveyed stated that they might be 
interested in such a program. In a broader 
survey about ecosystem services in gen-
eral, Ma and colleagues (2012) found that 
90% of surveyed corn– soybean farmers 

in Michigan were willing to accept some level of payment for 
services, including reduced fertilizer application. Additional 
research over a broader geographical area is needed to further 
explore these trends and the relative importance of these and 
other factors influencing farmer decisionmaking.

Much of the economics literature has focused on mac-
roscale factors, including policy and market conditions, and 
posits that a farmer will adopt a new technology or practice 
if the benefits of doing so exceed the costs (e.g., Feder et al. 
1985). Such threshold models have been applied to a growing 
body of literature on adoption of conservation technologies 
(Lichtenberg et al. 2010), such as low- or no-tillage practices 
(Knowler and Bradshaw 2007) and irrigation technologies 
(Schoengold and Zilberman 2007). Within this framework, 
the diffusion of a new technology is driven mostly by farmer 
heterogeneities (e.g., low-cost farmers adopt first, followed 
by high-cost farmers) or by network externalities, such as 
reduced equipment costs over time. Increasingly, the eco-
nomics literature recognizes the importance of information 
and learning in the adoption of both farm innovations in 
general and conservation practices specifically (e.g., Foster 
and Rosenzweig 1995, Zhao 2007), but empirical studies 
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have been limited. Such studies have also failed to incor-
porate other micro- and mesoscale factors emphasized in 
sociological studies. Like the sociological studies, economics 
research exploring N management in its entirety is lacking. 
Studies framed around specific N-management practices 
(e.g., soil testing, variable-rate fertilizer applications) fail 
to elaborate on how farmers make nutrient-management 
decisions in general, including how they evaluate different 
sources of information; how they determine application 
rates, methods, and timing; and how macroscale social and 
financial factors influence individual decisionmaking.

Even when ideas about environmental stewardship may 
resonate with an individual farmer (on the basis of per-
sonal beliefs and values), management decisions can be 
constrained by larger-scale economic or policy factors 
(Hendrickson and James 2005, Stuart 2009). Farmers who 
have participated in environmental efforts may abandon 
such endeavors because of changing market conditions. 
For example, some US corn farmers significantly changed 
their practices in response to demands for ethanol (Stuart 
and Gillon 2013). Studies indicate that global policies and 
market conditions have an increasingly important role in 
shaping farmer decisionmaking regarding the environment 
(Atwell et al. 2009). To fully understand the factors driving 
farmer decisionmaking, we must understand the interac-
tions of influences across multiple scales, not just the micro-, 
meso-, and macroscale factors separately.

We know that a variety of factors influence N-fertilizer deci-
sionmaking, including awareness of environmental issues, 

access to information and tools, sources 
of information, social capital (including 
trust and reciprocity), personal values 
and beliefs, and government policies and 
programs. Farmers are making decisions 
about N-fertilizer application on the basis 
of a complex set of factors influenced by 
decisions at multiple scales. However, 
studies have continued to include only 
a few of these factors at a time. CHANS 
research that focuses on how combined 
factors across scales interact to shape the 
context of N–application rate decisions is 
needed. In addition, farmer decisionmak-
ing is linked to biophysical factors, both 
directly through experienced ecological 
change and indirectly through social and 
policy changes at the meso- and mac-
roscales, respectively. Most farmers are 
astute observers, and their perceptions of 
environmental change will increasingly 
affect decisionmaking.

New policies and programs that emerge 
as result of environmental change will 
also increasingly shape land management 
decisions. Continued policy empha-
sis on environmental problems linked 

with agriculture, including excess N, will influence farmer 
behavior directly by incentivizing particular behaviors and 
indirectly via production decisions as well as land use. To 
understand excessive N as a CHANS, future researchers 
will need to emphasize such links between these social and 
biophysical factors and examine these relations across scales.

Conclusions
Excess reactive N in the environment is a result of cumu-
lative individual behaviors, as influenced by factors at 
different spatial scales, interacting with the biophysical 
properties of N. As is illustrated in figure 1, many factors 
are involved in these relationships. Although we know much 
about the biophysical basis for excess N, too little is known 
about forthcoming interactions with climate change and, 
in particular, about the effects of increasing climate vari-
ability. Social science research indicates important factors 
influencing farmer decisionmaking; however, in general, 
our understanding of the social, economic, and behavioral 
aspects of N loss remains insufficient for developing effec-
tive management and policy solutions. For instance, we do 
not know the extent of the use of N-efficiency strategies 
across the United States, what factors across different scales 
influence N-management decisions, and how farmers might 
perceive different policy approaches. Although researchers 
continue to examine N loss from biophysical and socio-
economic perspectives separately, what is most needed is 
an understanding of the interdependencies between farmer 
decisionmaking and biogeochemical cycles.
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A CHANS approach provides the opportunity to analyze 
the social and biophysical factors influencing N loss together 
through an integrative model. In particular, multilevel struc-
tural equation modeling (Preacher et al. 2010) can be used 
to examine interdependencies, reciprocity, and feedback 
effects among select biophysical and social components of 
the system. Integrative models can be used to link biophysi-
cal, social, and economic data together to comprehensively 
analyze the factors influencing decisionmaking and environ-
mental impacts, what factors are most influential, and how 
interactions may change over time. Identifying the recursive 
relations and understanding the interdependencies and 
feedback of these social and biophysical factors are crucial 
for identifying solutions to the excess N problem. As poli-
cymakers move forward with their approaches to address 
excess N in the environment, CHANS research can provide 
the insights needed to understand how social and biophysi-
cal factors interact across scales. Knowledge of dynamic 
cross-scale relationships should lead to new, more effective 
strategies to address this persistent and pervasive problem.
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